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Abstract
We present a computer simulation study of suspensions of rod-like colloids and a depletant in
confinement to a slit-pore. Mixtures of hard spherocylinders and ideal spheres were studied by
means of Monte Carlo simulations in the grand canonical ensemble. By use of finite size
scaling analysis we determined the critical behaviour. In order to overcome large barriers in the
free energy we applied the successive umbrella sampling method (Virnau and Müller 2004
J. Chem. Phys. 120 10925). We find that, under confinement, the critical point of gas–liquid
demixing shifts to higher concentrations of rods and smaller concentrations of spheres due to
the formation of an orientationally ordered surface film. If the separation between the walls
becomes very small, the critical point is shifted back to smaller concentrations of rods because
the surface film breaks up. In particular, we present a method for determining the wetting
behaviour from an analysis of the distribution of particle concentration. For large wall
separations we find wetting near the critical point consistent with the Cahn argument.

1. Introduction

The reason for our interest in mixtures of rod-like colloids
and depletants is twofold. From the experimental point of
view, such mixtures are relevant in various fields of physics:
suspensions of viruses and polymers have been successfully
studied as a colloidal model system for liquid crystals for
several years [1, 2]. Recently, such suspensions have in
particular been used to study non-equilibrium effects [3–5].
Mixtures of carbon nanotubes and micelles suspended in a
polymeric matrix are an interesting candidate for low-weight
conducting material use (see [6] and references therein). And
even the assembly of the cytoskeleton (being a structure
composed of rod-like objects in a very crowded environment)
has been discussed in the framework of a rod-plus-depletant
model [7].

As regards theoretical statistical mechanics, rod–sphere
mixtures under confinement offer insight into surface induced
ordering phenomena. In the bulk, such mixtures exhibit gas–
liquid coexistence with a critical point of the Ising universality
class (as long as the aspect ratio of the rods is sufficiently
small) [8]. However, in confinement, orientational order is
induced by the walls. This order affects the phase transitions
and the critical behaviour of the system. Understanding
these effects is interesting from the point of view of critical
phenomena, as well as a prerequisite for applications of liquid
crystals in microfluidic devices.

Several related issues have recently been addressed by
other groups. Dijkstra, van Roij and Evans studied suspensions
of hard rods in confinement between hard walls close to the
isotropic–nematic transition in Gibbs ensemble simulations [9]
and within the Zwanzig model [10, 11]. They found that
a uniaxial surface phase forms at low concentrations. At
higher concentrations the surface film undergoes a transition to
biaxial order, and on further approach of the isotropic–nematic
transition, its thickness diverges.

Rods in two dimensions—i.e. the limiting case of an
infinitely thin confining slit-pore—have been studied with
emphasis on several aspects of orientational order [12–16].

Sphere–sphere mixtures in confinement have been
simulated by Gibbs ensemble Monte Carlo methods [17] and
with the successive umbrella sampling method [18–21]. In
particular, in the studies by Vink and co-workers the crossover
from 3D to 2D critical behaviour was investigated.

Here, we present a study of mixtures of hard rods
and freely interpenetrable spheres (i.e. an extension of the
Asakura–Oosawa model [22, 23] to include orientational
degrees of freedom), which were confined to hard-walled slit-
pores. By means of Monte Carlo simulation in the grand
canonical ensemble and by finite size scaling analysis, we
have determined the phase boundaries of isotropic–isotropic
coexistence in the bulk and in confinement. In particular, we
present a method by which the contact angle of a droplet in
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contact with a wall can be determined from simulations in the
grand canonical ensemble. We discuss the wetting properties
of the rod–sphere system.

2. Model and simulation method

The rod-like colloidal particles were modelled as hard
spherocylinders of length L and diameter D. The spherical
depletants were of the same diameter. They were freely
interpenetrable among each other and hard with respect to
the rods. Hence, this model is an extension of the Asakura–
Oosawa model to rod-like colloids. The Monte Carlo
simulations were performed in the grand canonical ensemble,
where the chemical potentials μr/s of rods and spheres, the
volume V of the simulation box and the temperature T were
fixed. The numbers of rods Nr and spheres Ns were allowed
to fluctuate, which was realized by insertions and removals of
particles. Minimal image periodic boundary conditions were
applied in the dimensions parallel to the walls. The interactions
of rods and spheres with the walls were modelled to be hard.
The system was equilibrated with the usual insertion/removal
moves of spherocylinders and spheres as well as with a
grand canonical cluster move, which considerably improves
the acceptance probability, especially in the sphere-dense
phase [8].

The energetically unfavourable states were explored with
help of the successive umbrella sampling method [24].
Probabilities of finding a specific volume fraction of rods
(defined as ηr = Nrvr/V with vr = π D3(2 + 3L/D)/12,
the volume of a spherocylinder) at given sphere fugacity zs =
exp(μs/kBT ) were sampled in the simulations. The chemical
potential of spheres plays the role of an inverse temperature
for the attractive forces arising between the rods due to the
presence of the depletant.

The results of a simulation for a given chemical potential
of rods μsim

r can be rescaled to any chemical potential μr via

ln[Pμr(Nr)] = ln[Pμsim
r

(Nr)] + (μr − μsim
r )Nr. (1)

The clue in this observation is that the coexistence
distribution can be obtained from simulations at any chemical
potential. At coexistence, the distribution Pμr(Nr) is bimodal,
i.e. the areas under the two peaks are equal [25]. The mean
values of the peak positions are the volume fractions of the
coexisting states.

The position of the critical point is derived from the
crossing point of the cumulant ratios [25, 26], defined as
U4 = 〈m4〉/〈m2〉2 with m = ηr − 〈ηr〉, as a function of sphere
fugacity for different system sizes. The systems considered
were rectangular L‖ × L‖ × d boxes, with L‖ chosen in the
range from d to d + 3L with periodic boundary conditions in
the directions parallel to the confining walls. The rod volume
fraction which corresponds to the critical sphere fugacity is
approximated as the average of the volume fractions of the
coexisting rod-rich and rod-poor phases ηc

r = (ηl
r + η

g
r )/2.

Typically, 3 × 107 Monte Carlo insertion/removal moves
were attempted per sampling window in successive umbrella
sampling simulations. For each volume fraction of rods, the
volume fraction of spheres present in the system was measured

and averaged over the number of times that this rod volume
fraction occurred. The critical sphere volume fraction is the
one which corresponds to the critical rod volume fraction and
was measured at the critical sphere fugacity. The position
of the critical point was derived after simulating the system;
thus, the value of the critical sphere fugacity was not known
beforehand. If no simulation runs were available at the critical
sphere fugacity, the sphere volume fractions from the results of
the simulations with closest larger and smaller values of the
fugacity were used to limit the range in which the required
critical sphere volume fraction lies.

In order to study the orientational ordering effects, we
measure profiles of the nematic order parameter S, which is
defined as the absolute largest eigenvalue [27] of the tensor

Q(z) = 1

2Ñr

Ñr∑

i=0

(
3ui · ui − I

)
(2)

where ui is the unit vector in the direction of the orientation
of the rod i and I is the identity matrix. The space between
the walls is divided into thin slices, so Ñr is the number of
rods in such a slice at the distance z/D from the middle of the
simulation box.

S indicates whether there is a preferred direction in the
system and how strongly the rods are oriented with respect to
it. The eigenvector to this eigenvalue is called the director. If
S is zero, the phase is completely isotropic. If S is unity, all
rods are aligned parallel to the director (nematic order). If S
is negative, they lie perpendicular to the director (commonly
called ‘uniaxial order’, although the nematic phase is uniaxial,
too). The biaxiality measure ξ is half of the difference of the
other two eigenvalues of the matrix Q. It shows whether there
is another preferred direction in the plane perpendicular to the
director.

3. Results

3.1. Phase diagram

Figure 1 shows the phase diagram that we obtained for rods of
aspect ratio L/D = 3 at wall separations d = 3, 6, 9, 15 D and
in the bulk. The phase boundaries are indicated. The smaller
the distance between the walls, the larger the sphere fugacity
which is required for demixing.

Table 1 sums up the positions of the critical point for
various wall distances. When the system is confined, the
critical point lies at a higher rod volume fraction than in the
bulk. However, once in confinement, the shifts in the critical
rod volume fraction in comparison to the bulk are almost
the same for all wall separations, as long as the distance
between the walls is large enough for the correlations, which
are induced by the walls, to decay before the centre of the pore
is reached.

To study structural changes due to the interaction of
the rods with the walls, the gas-like and liquid-like phases
were simulated under confinement in the canonical ensemble
(fixed number of spherocylinders Nr , spheres Ns as well as
the volume of the simulation box). The number of particles
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Table 1. Critical point in confinement.

d/D zc
s,conf ηc

r,conf ηc
s,conf μc

r,conf

3 1.85 ± 0.03 0.157 ± 0.002 0.30 ± 0.01 10.1 ± 0.2
4 1.59 ± 0.02 0.164 ± 0.002 0.29 ± 0.01 8.9 ± 0.1
5 1.48 ± 0.02 0.169 ± 0.002 0.27 ± 0.01 8.5 ± 0.1
6 1.38 ± 0.02 0.169 ± 0.002 0.26 ± 0.01 8.0 ± 0.1
9 1.26 ± 0.01 0.169 ± 0.002 0.25 ± 0.01 7.35 ± 0.05

12 1.22 ± 0.01 0.169 ± 0.002 0.25 ± 0.01 7.04 ± 0.05
15 1.18 ± 0.01 0.166 ± 0.002 0.25 ± 0.01 6.74 ± 0.05
∞ 1.109 ± 0.001 0.131 ± 0.002 0.30 ± 0.01 6.208 ± 0.005

Figure 1. Phase diagram for a mixture of spherocylinders with aspect
ratio L/D = 3 and spheres of diameter D in bulk (crosses) and
between two hard walls at distances d = 3 D (squares), 6 D (circles),
9 D (triangles) and 15 D (diamonds). The filled symbols mark the
critical points. Curves are guides to the eye only, connecting data for
the rod volume fractions of the coexisting phases rich (right) and
poor (left) in rods, for systems of lateral linear dimensions
L‖ = 12 D for d = 6, 9 D and L‖ = 18 D for d = 3, 15 D.

was chosen to match the coexistence values determined in
the grand canonical ensemble. Although in principle the
finite size effects are different in the canonical and grand
canonical ensembles [25], far enough from the critical point
this difference can safely be neglected.

Figure 3 shows profiles of the nematic order parameter
(bottom) and of the rod volume fraction changes in the gas-
like and liquid-like phases due to the walls. The biaxiality
parameter ξ (not shown here) fluctuates around zero in both
phases. The nematic order parameter of the gas-like phase in
the middle of the box is not shown here, since the number
of rods from which this parameter has to be calculated is
very small and the statistics were extremely poor. Although
longer simulation runs and larger system sizes would yield
a better estimate for the nematic order parameter, the effort
is redundant, since a simple look at the snapshots provides
convincing evidence that the phase considered is an isotropic
gas. In the more important area close to the walls the sampling
of the nematic order parameter works well, since the number
of rods is sufficient for getting reliable results.

The hard walls induce a layered uniaxial phase (see the
sketch in figure 4), whose thickness is of the order of the rod
length. The phases between these two uniaxial films have
the same properties as the usual bulk gas-like and liquid-like
phases. Hence, confinement shifts the phase diagram in terms
of the rod volume fraction such that the uniaxial layered films

Figure 2. Phase diagram of figure 1 in the (ηr, ηs) plane.

are introduced to the system. The gas-like phase is moved to
larger rod volume fractions since the density of the uniaxial
film is larger than it is in the bulk gas-like phase. The density
of the uniaxial film in the liquid-like phase is smaller than in
the bulk due to the layering effects as can be seen in figure 3,
upper panel. Thus, the liquid-like branch is shifted to smaller
volume fractions. As long as the uniaxial layers on the walls
do not interact, these changes do not depend on the distance
between the walls. Once the layers start to interact—roughly at
d < 2L—the separation distance d becomes important. Gas–
liquid demixing then occurs laterally inside the layers.

In terms of the sphere fugacities, the phase diagram
is continuously shifted to higher values. However, if one
considers the actual volume fraction of spheres in the mixture
instead of their chemical potential, the phase diagram remains
almost unchanged by confinement, as indicated in figure 2,
provided the demixing transition occurs in the bulk-like central
region and not in the uniaxial layers at the walls. The shift in
the fugacities is due to the reduced volume available between
the uniaxial films. At decreasing wall separation the free
volume accessible to spheres between the uniaxial layers of
rods becomes smaller; therefore the chemical potential needed
to keep the spheres in equilibrium with the rods increases. The
sphere volume fraction in the system stays constant as long as
the rod volume fraction of the stable phase does not change due
to moving the walls.

3.2. Wetting behaviour

From the successive umbrella sampling simulations a profile
P(ηr) is obtained. Its logarithm corresponds (up to a constant)
to the effective free energy as a functional of the rod volume
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Figure 3. Confinement induced difference in volume fraction of the
rods �ηr = ηconf

r − ηbulk
r for the gas-like (open triangles) and

liquid-like (open squares) phases (top). Nematic order parameter S in
the gas-like (open triangles) phase at the walls and in liquid-like
(open squares) phase (bottom). The distance between the walls is
d = 12 D; the rod aspect ratio L/D = 3. The corresponding sphere
fugacity is zs = 1.4. These data refer to a lateral linear dimension
L‖ = 24 D.

Figure 4. Sketches of configurations in confinement. Close to the
walls, the system forms a uniaxial film; further away it behaves as in
the bulk liquid (upper panel) or bulk gas (lower panel).

fraction. Thus, the differences in free energy of various states
can be extracted from this profile. Consider the gas-like phase.
The rod volume fraction which would be stable in the bulk at a
fixed sphere fugacity is known from previous simulations [8].

Now, the free energy difference between this value and the
value of the gas-like phase stable in confinement, �F1, can be
read off the free energy profile, as indicated in figure 5. This
difference is the free energy needed to create the interfaces
of the bulk-like gas phase (g) with the walls (w). The

Figure 5. Free energy ln[P(ηr)] for spherocylinders between the
walls at distance d = 12 D and sphere fugacity zs = 1.4. �F1 and
�F2 indicate the energy differences between the states stable in the
bulk and in confinement on the gas-like and on the liquid-like sites
on the phase diagram.

corresponding interfacial tension γg,w can be calculated as

γg,w = �F1

2A
(3)

with A the area of one wall. Similarly, the tension of the
interface between the liquid-like phase (l) and the wall can be
determined:

γl,w = �F2

2A
(4)

with �F2 the free energy difference between the liquid-like
branches in the rod volume fraction in bulk and in confinement.

Assume that the liquid-like phase forms a droplet on the
wall. According to Young’s law, the contact angle θg,l is
determined by

γg,l cos θg,l = γg,w − γl,w. (5)

The tension of the interface between the gas-like and
the liquid-like phases was calculated in the previous
simulations [8]; the interfacial tension difference on the right-
hand site of the equation can be obtained by subtracting
equation (4) from (3). Thus, everything needed to determine
the contact angle is known.

Figure 6 shows the cosine of the contact angle obtained in
this way at wall separations d = 9, 12, 15 D. On approach to
the critical point the ratio (γg,w −γl,w)/γg,l is expected to show
power law behaviour [28] with the exponent β1 − μ ≈ −0.5,
where β1 ≈ 0.8 is the surface critical exponent [29–31] and
μ ≈ 1.3 is the gas–liquid interfacial tension exponent. Lines
in figure 6 indicate the predicted power law. Since cos θg,l

cannot exceed unity, the point where this ratio reaches unity
determines the value of zs at which (for d → ∞) the wetting
transition occurs.

4. Discussion and summary

We have presented computer simulation studies of suspensions
of rods and depleting spheres under confinement to a slit-pore.
In confinement, the critical point is shifted to higher volume
fractions of rods as compared to the bulk, because uniaxially
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Figure 6. cos θg,l as a function of the distance from the critical point
for wall separations d = 9 D (squares), 12 D (diamonds) and 15 D
(circles). The slope of the lines is −0.5 (they are not fitted).

ordered surface layers form close to the walls. Unless the
wall separation is reduced to less than twice the uniaxial film
thickness, the critical volume fraction of rods stays almost
constant on decrease of the distance between the walls. Once
the uniaxial layers at the walls start to interact, the critical point
is shifted back in the direction of the bulk critical rod volume
fraction.

We have introduced a method by which the wetting
behaviour can be extracted from the grand canonical
distribution of particle concentration. On approach to
the critical point, the system shows complete wetting in
accordance with the Cahn argument. Contact angles of droplets
in the regime of incomplete wetting are estimated without the
need for simulating such wall-attached large droplets.

Experimentally, suspensions of rods and depletant are
relevant in various contexts, such as colloidal liquid crystal
models made from fd-virus and polymers, low-weight
conductors made from carbon nanotubes and surfactant
micelles, and actin filaments in the crowded environment of
the cell. Therefore we hope that our calculations can serve as a
guideline to what can be expected in experiments if the systems
are confined to a slit-pore.
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Forschungszentrum Jülich for CPU time on the JUMP.

References

[1] Dogic Z and Fraden S 2006 Ordered phases of filamentous
viruses Curr. Opin. Colloid Interface Sci. 11 47

[2] Dogic Z, Prudy K R, Grelet E, Adams M and Fraden S 2004
Isotropic–nematic phase transition in suspensions of
filamentous virus and the neutral polymer dextran Phys. Rev.
E 69 051702

[3] Dhont J K G, Lettinga M P, Dogic Z, Lenstra T A J, Wang H,
Rathgeber S, Carletto P, Willner L, Frielinghaus H and
Lindner P 2003 Shear-banding and microstructure of
colloids in shear flow Faraday Discuss. 123 157

[4] Kang K G, Lettinga M P, Dogic Z and Dhont J K G 2006
Vorticity banding in rodlike virus suspensions Phys. Rev. E
74 026307

[5] Lettinga M P and Dhont J K G 2004 Non-equilibrium phase
behaviour of rod-like viruses under shear flow J. Phys.:
Condens. Matter 16 S3929

[6] Vigolo B, Coulon C, Maugey M, Zakri C and Poulin P 2005 An
experimental approach to the percolation of sticky nanotubes
Science 309 920

[7] Borukhov I, Bruinsma R F, Gelbart W M and Liu A J 2005
Structural polymorphism of the cytoskeleton: a model of
linker-assisted filament aggregation Proc. Natl Acad. Sci.
USA 102 3673

[8] Jungblut S, Tuinier R, Binder K and Schilling T 2007 Depletion
induced isotropic–isotropic phase separation in suspensions
of rod-like colloids J. Chem. Phys. 127 244909

[9] Dijkstra M, van Roij R and Evans R 2001 Wetting and capillary
nematization of a hard-rod fluid: a simulation study Phys.
Rev. E 63 051703

[10] van Roij R, Dijkstra M and Evans R 2000 Orientational wetting
and capillary nematization of hard-rod fluids Europhys. Lett.
49 350

[11] van Roij R, Dijkstra M and Evans R 2000 Interfaces, wetting,
and capillary nematization of a hard-rod fluid: theory for the
Zwanzig model J. Chem. Phys. 113 7689

[12] Bates M A and Frenkel D 2000 Phase behavior of
two-dimensional hard rod fluid J. Chem. Phys. 112 10034

[13] Lagomarsino M C, Dogterom M and Dijkstra M 2003
Isotropic–nematic transition of long, thin, hard
spherocylinders confined in a quasi-two-dimensional planar
geometry J. Chem. Phys. 119 3535

[14] Donev A, Burton J, Stillinger F and Torquato S 2006 Tetratic
order in the phase behaviour of a hard-rectangle system
Phys. Rev. B 73 054109

[15] Vink R L C 2007 Liquid crystals in two dimensions: first-order
phase transition and nonuniversal critical behaviour Phys.
Rev. Lett. 98 217801

[16] Martı́nez-Ratón Y 2007 Capillary ordering and layering
transition in two-dimensional hard-rod fluids Phys. Rev. E
75 051708

[17] Fortini A, Schmidt M and Dijkstra M 2006 Phase behavior and
structure of model colloid–polymer mixtures confined
between two parallel planar walls Phys. Rev. E 73 051502

[18] Vink R L C, Binder K and Horbach J 2006 Critical behavior of
a colloid–polymer mixture confined between walls Phys.
Rev. E 73 056118

[19] Vink R L C, De Virgiliis A, Horbach J and Binder K 2006
Phase diagram and structure of colloid–polymer mixtures
confined between walls Phys. Rev. E 74 031601

[20] De Virgiliis A, Vink R L C, Horbach J and Binder K 2007
Colloid–polymer mixtures between asymmetric walls:
evidence for an interface localization transition Europhys.
Lett. 77 60002

[21] Fortini A, Bolhuis P G and Dijkstra M 2008 Effect of excluded
volume interactions on the interfacial properties of
colloid–polymer mixtures J. Chem. Phys. 128 024904

[22] Oosawa F and Asakura S 1954 On interaction between two
bodies immersed in a solution of macromolecules J. Chem.
Phys. 22 1255

[23] Vrij A 1976 Polymers at interfaces and the interactions in
colloidal dispersions Pure Appl. Chem. 48 471

[24] Virnau P and Müller M 2004 Calculation of free energy through
successive umbrella sampling J. Chem. Phys. 120 10925

5

http://dx.doi.org/10.1016/j.cocis.2005.10.004
http://dx.doi.org/10.1103/PhysRevE.69.051702
http://dx.doi.org/10.1039/b205039k
http://dx.doi.org/10.1103/PhysRevE.74.026307
http://dx.doi.org/10.1088/0953-8984/16/38/011
http://dx.doi.org/10.1126/science.1112835
http://dx.doi.org/10.1073/pnas.0404140102
http://dx.doi.org/10.1063/1.2815805
http://dx.doi.org/10.1103/PhysRevE.63.051703
http://dx.doi.org/10.1209/epl/i2000-00155-0
http://dx.doi.org/10.1063/1.1288903
http://dx.doi.org/10.1063/1.481637
http://dx.doi.org/10.1063/1.1588994
http://dx.doi.org/10.1103/PhysRevB.73.054109
http://dx.doi.org/10.1103/PhysRevLett.98.217801
http://dx.doi.org/10.1103/PhysRevE.75.051708
http://dx.doi.org/10.1103/PhysRevE.73.051502
http://dx.doi.org/10.1103/PhysRevE.73.056118
http://dx.doi.org/10.1103/PhysRevE.74.031601
http://dx.doi.org/10.1209/0295-5075/77/60002
http://dx.doi.org/10.1063/1.2818562
http://dx.doi.org/10.1351/pac197648040471
http://dx.doi.org/10.1063/1.1739216


J. Phys.: Condens. Matter 20 (2008) 404223 S Jungblut et al

[25] Landau D P and Binder K 2000 A Guide to Monte Carlo
Simulations in Statistical Physics (Cambridge: Cambridge
University Press)

[26] Binder K 1981 Finite size scaling analysis of Ising model block
distribution functions Z. Phys. B 43 119

[27] Low R J 2002 Measuring order and biaxiality Eur. J. Phys.
23 111

[28] Dietrich S 1988 Wetting phenomena Phase Transitions and
Critical Phenomena (London: Academic)

[29] Binder K and Hohenberg P C 1972 Phase transitions and static
spin correlations in Ising models with free surfaces
Phys. Rev. B 6 3461

[30] Binder K and Hohenberg P C 1974 Surface effects on magnetic
phase transitions Phys. Rev. B 9 2194

[31] Diehl H W 1986 Field-theoretic approach to critical behaviour
at surfaces Phase Transitions and Critical Phenomena
(London: Academic)

6

http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1088/0143-0807/23/2/303
http://dx.doi.org/10.1103/PhysRevB.6.3461
http://dx.doi.org/10.1103/PhysRevB.9.2194

	1. Introduction
	2. Model and simulation method
	3. Results
	3.1. Phase diagram
	3.2. Wetting behaviour

	4. Discussion and summary
	Acknowledgments
	References

